Real-World Examples

Gradient emerged from patterns discovered while building Claude Code plugins. These real-world examples demonstrate the architecture in practice.


Example 1: YMD-Spec Plugin

Purpose: Format specification and authoring tools for YMD/PMD structured prompts.

Repository: daviguides/ymd-spec

Architecture

Directory Structure

ymd-spec/
├── ymd_format_spec.md          # SPECS: YMD normative definition
├── pmd_format_spec.md          # SPECS: PMD normative definition
├── composition_spec.md         # SPECS: Composition rules
│
├── context/                    # CONTEXT: Applied knowledge
│   ├── examples.md            # Working YMD/PMD examples
│   ├── implementation-guide.md # Creation step-by-step
│   ├── decision-guide.md      # When to use what
│   └── quick-reference.md     # Fast lookup patterns
│
├── prompts/                    # PROMPTS: Orchestration
│   ├── load-context.md        # Main context loader
│   ├── create-ymd.md          # YMD creation workflow
│   ├── create-pmd.md          # PMD creation workflow
│   └── validate-composition.md # Validation workflow
│
├── commands/                   # COMMANDS: API entry points
│   ├── load-ymd-context.md
│   ├── create-ymd-manifest.md
│   ├── create-pmd-partial.md
│   └── validate-composition.md
│
├── agents/                     # AGENTS: Specialized contexts
│   ├── ymd-author.md          # Authoring specialist
│   ├── composition-expert.md  # Composition patterns expert
│   └── ymd-validator.md       # Format validator
│
└── cheatsheet/                 # Quick lookup tables
    ├── ymd-sections.md
    └── jinja2-syntax.md

Reference Chain Example

User invokes command:

/create-ymd-manifest

Command delegates to prompt:

<!-- commands/create-ymd-manifest.md -->
Create new YMD manifest file.

@~/.claude/ymd-spec/prompts/create-ymd.md

Prompt loads specs and context:

<!-- prompts/create-ymd.md -->
# Create YMD Manifest

## Format Specifications (Normative)

@../ymd_format_spec.md

## Applied Knowledge (Practical)

@../context/examples.md
@../context/implementation-guide.md

## Your Task

Guide the user in creating a YMD manifest file:
1. Gather requirements (purpose, sections needed)
2. Use examples for structure inspiration
3. Validate against format specification

Result: Zero duplication, clear separation of concerns.

Metrics

Metric Value Target Status
Duplication Ratio 1.0 ≤1.1 ✓ Pass
Reference Density (prompts) 75%

50%

✓ Pass
Command File Sizes 3 lines avg ≤5 lines ✓ Pass
Total Maintenance Points 3 specs N/A Clean SSOT

Example 2: Semantic Docstrings Plugin

Purpose: Python docstring standards following semantic documentation principles.

Repository: daviguides/semantic-docstrings

Architecture

Directory Structure

semantic-docstrings/
├── semantic-docstrings-spec/   # SPECS: Normative layer
│   ├── docstring-standards.md  # Semantic principles
│   └── python-conventions.md   # Python-specific rules
│
├── context/                    # CONTEXT: Applied layer
│   ├── python-examples.md     # Annotated code examples
│   ├── implementation-patterns.md # Common patterns
│   └── anti-patterns.md       # What to avoid
│
├── prompts/                    # PROMPTS: Orchestration
│   ├── load-semantic-context.md
│   ├── add-docstring.md
│   └── validate-docstrings.md
│
├── commands/                   # COMMANDS: API layer
│   ├── load-semantic-context.md
│   ├── add-class-docstring.md
│   ├── add-function-docstring.md
│   ├── add-module-docstring.md
│   └── validate-docstrings.md
│
└── agents/                     # AGENTS: Specialized
    ├── docstring-reviewer.md
    └── documentation-specialist.md

Key Insight: Standards vs Application

SPECS layer (docstring-standards.md):

# Semantic Docstring Standards

## Purpose Statement

Every docstring MUST include a purpose statement explaining:
- What the component does
- Why it exists
- What responsibility it fulfills

## Responsibility Section

Functions/classes MUST document:
- Single overarching responsibility
- Boundaries (what it does NOT handle)
- Role in the system architecture

CONTEXT layer (python-examples.md):

# Python Docstring Examples

For standards reference: @../semantic-docstrings-spec/docstring-standards.md

## Example: Function with Clear Purpose

\```python
def calculate_user_discount(
    user: User,
    purchase_amount: Decimal,
) -> Decimal:
    """Calculate discount based on user loyalty and purchase volume.

    Responsibility:
        Compute final discount amount considering multiple factors.

    Boundaries:
        - Does NOT validate user state (handled by caller)
        - Does NOT apply discount to purchase (returns amount only)

    Args:
        user: User account for loyalty tier determination
        amount: Purchase amount for volume-based calculation

    Returns:
        Final discount amount, capped at maximum allowed discount
    """
\```

Benefit: Standards evolve independently from examples. Update principle → Examples remain valid because they reference standards.


Example 3: Code-Zen Plugin

Purpose: Zen of Python implementation guide for code generation.

Repository: daviguides/code-zen

Architecture

Directory Structure

code-zen/
├── zen-spec/                   # SPECS: Normative layer
│   ├── zen-principles.md      # The 19 principles
│   └── python-standards.md    # Python conventions
│
├── context/                    # CONTEXT: Applied layer
│   ├── zen-applied.md         # Principles in practice
│   ├── code-examples.md       # Before/after examples
│   └── anti-patterns.md       # Common violations
│
├── prompts/                    # PROMPTS: Orchestration
│   ├── load-zen-context.md    # Load all context
│   ├── zen-check.md           # Compliance validation
│   └── zen-refactor.md        # Guided refactoring
│
├── commands/                   # COMMANDS: API layer
│   ├── load-zen-context.md
│   ├── zen-check.md
│   └── zen-refactor.md
│
└── agents/                     # AGENTS: Specialized
    ├── python-zen-expert.md   # Zen specialist
    └── zen-reviewer.md        # Code reviewer

Key Insight: Principles vs Application

SPECS layer (zen-principles.md):

# Zen of Python Principles

## Principle 2: Explicit is better than implicit

**Definition**: Code behavior should be obvious from reading it.
Avoid hidden side effects, implicit type conversions, or magic behavior.

**Applies to**:
- Function signatures (explicit parameters)
- Type hints (explicit types)
- Error handling (explicit raises)
- State changes (explicit mutations)

CONTEXT layer (zen-applied.md):

# Zen Applied: Explicit Over Implicit

For principle definitions: @../zen-spec/zen-principles.md

## Application: Function Signatures

**Implicit (avoid)**:
\```python
def save_user(user, db=None):
    db = db or get_default_db()  # Implicit behavior
    # ...
\```

**Explicit (preferred)**:
\```python
def save_user(
    user: User,
    database: Database,
) -> None:
    """Save user to specified database."""
    # All dependencies explicit
\```

Benefit: Principles remain stable, application examples evolve with community best practices.


Common Patterns Across Examples

Pattern 1: Spec-First Architecture

All three examples follow the same bootstrap approach:

Why this order?

  • SPECS define rules for everything else
  • CONTEXT references SPECS (can’t exist without specs)
  • PROMPTS load both SPECS and CONTEXT
  • COMMANDS/AGENTS delegate to PROMPTS

Pattern 2: Thin Commands

All three examples use identical command pattern:

<!-- commands/{command-name}.md -->
Brief description of command purpose.

@../prompts/{corresponding-prompt}.md

Characteristics:

  • ≤5 lines total
  • Single @ reference
  • Zero business logic
  • One-to-one mapping with prompts

Pattern 3: Context References Specs

All CONTEXT files reference SPECS for authoritative definitions:

YMD-Spec:

For format rules: @../ymd_format_spec.md

Semantic Docstrings:

For standards reference: @../semantic-docstrings-spec/docstring-standards.md

Code-Zen:

For principle definitions: @../zen-spec/zen-principles.md

Benefit: Context stays synchronized with specs automatically.

Pattern 4: Prompts as Orchestrators

All PROMPTS follow similar structure:

# {Purpose}

## Specifications (Normative)

@../spec1.md
@../spec2.md

## Applied Knowledge (Practical)

@../context/examples.md
@../context/guide.md

## Your Task

[Brief meta-instructions for LLM]

Metrics achieved:

  • Reference density: 60-80%
  • Inline content: <5 lines per section
  • Zero duplication

Comparative Analysis

Metrics Across Examples

Metric YMD-Spec Semantic-Docstrings Code-Zen
Duplication Ratio 1.0 1.0 1.0
Reference Density (prompts) 75% 68% 80%
Command Avg Size 3 lines 3 lines 3 lines
SPECS Count 3 2 2
CONTEXT Count 4 3 3
PROMPTS Count 4 3 3
COMMANDS Count 4 5 3
AGENTS Count 3 2 2

Consistency Across Projects

All three examples demonstrate:

  • Zero duplication (duplication ratio = 1.0)
  • Thin orchestrators (reference density >50%)
  • Command simplicity (≤5 lines)
  • Clear SSOT (each concept in one place)
  • Maintainable architecture (update once, propagate everywhere)

Learning Path

For New Projects

Start with:

  1. YMD-Spec - If building format specifications
  2. Semantic-Docstrings - If creating code standards
  3. Code-Zen - If documenting principles/guidelines

Adapt patterns:

  • Same directory structure
  • Same reference patterns
  • Same layer responsibilities
  • Same validation metrics

For Existing Projects

Migration approach:

  1. Study one example similar to your domain
  2. Map your content to Gradient layers
  3. Identify duplications
  4. Consolidate to SSOT
  5. Replace with references
  6. Validate metrics

Try It Yourself

Clone and Explore

YMD-Spec:

git clone https://github.com/daviguides/ymd-spec.git
cd ymd-spec
./install.sh

Semantic-Docstrings:

git clone https://github.com/daviguides/semantic-docstrings.git
cd semantic-docstrings
./install.sh

Code-Zen:

git clone https://github.com/daviguides/code-zen.git
cd code-zen
./install.sh

Validate Metrics

Run Gradient validation tools on these examples:

# Validate references
bash ~/.claude/gradient/scripts/validate-references.sh ymd-spec/

# Detect duplication
bash ~/.claude/gradient/scripts/detect-duplication.sh ymd-spec/

# Calculate metrics
bash ~/.claude/gradient/scripts/calculate-metrics.sh ymd-spec/

Expected results: All pass with zero duplication.


Next Steps


Key Takeaway: These real-world examples demonstrate that Gradient is not theoretical—it’s a proven architecture used in production Claude Code plugins, achieving zero duplication and maintainable structures.